ﬂwAaLaptablaI/o AD! (@S

OLCF & NICS Spring Cray XT5|
Hex-Core Workshop

ScottA. Klasky)
5/10/2010

Jay Lofstead; Matthew Wolf; Karsten
Schwan; Qing Liu; Norbert Podhorszki; Todd
Kordenbrock; Ron Oldfield Hasan Abbasi;
Fang Zheng; Ciprian Docan; Fan Zhang;
Divya Dinakar; Roselyne Tchoua, Xiaosong
Ma; Mladen Vouk, Nagiza Samatova;
Alexander Romosan; Sriram
Lakshminarasimhan; Michael Warren; Bing
Xie; Arie Shoshani; Micah Beck; John Wu,
Weikuan Yu, Yuan Tian, Stephane Ethier, Ray
Grout, Seung Hoe Ku, Yong Xiao, Zhihong Lin

ADI&s

It’s all about the applicatior

\ vI hours
M — C.S. Chang, S.H. Ku
e GEM (30M hours)
— Y. Chen, S. Parker, W. Wang
bnkaran Gysela5D (35M hours)
— P. Diamond, G. Dif Pradiler

e 248 M hours

* 16% INCITE time
(2 © Djects.

duie, rAd>1, reliable, accurate.

C C
3
*TTHKIDGE
National Laboratory D I

y - \V/ K

Advanced computing at ORNL-NCCS

Specs |umear(d) | Jaguar(xT5)
Peak Pflops 0.3 2.3
k Cores 31,328 224,256
Compute Nodes 7,832 18,772
Memory (TB) 60 300
Disk Bandwidth (GB/s) 72 120
Time to write memory to disk (s) 853 2560

{ N kv
QLAK

CRIDGE ADIs

File System, Problems for the Xscale

The 1/0O on a HPC system is stressed omery o1 4500010
— Checkpoint-restart writing ™ 4
— Analysis and visualization writing Potatyio} l .
— Analysis and visualization reading parael |59 5 m
Our systems are growing by 2x FLOPS/year. |+
Disk Bandwidth is growing ~20%/year. oo g P
Need the number of increase faster than S

Garth Gibson 2010

the number of nodes
As the systems grow, the MTF grows.

As the complexity of physics increases, the analysis/viz.
output grows.

Need new and innovative approaches in the field to cope with
this problem.

ADI&s

Lustre consists of four major

components

— MetaData Server (MDS)
— Object Storage Servers (OSSs)
— Object Storage Targets (OSTs)

— Clients
MDS

— Manages the name space,
directory and file operations

— Stores file system metadata
— Extended attributes point to

objects on OSTs

0SS
— Manages the OSTs

OST

— Manages underlying block devices
Striping, alignment, placement

— Key for performance

LUSTRE

Metadata Ops

—

Client

\

Block I/O and file ™=

locking

IFiIe creation, stats,

recovery

%
OST1 O0ST2 OST3

OST1 O0ST2 OST3

Fully Striped

I 1 (FileA] (11 JI[1 JIi[[L 2 J| [FileA]
= |l 2 1
4 4 3
Single Striped Two Striped
OST1 OST2 OST3 e Stripe count (or width)
— # of OSTs the file has been
1 11 I 2] stripped over
HEE e Stripe size
1 L2 Jj|[3] File B — Size of each stripe on an OST
4 e Normally same for all OSTs

for a given file

/O Efficiency and Simplicity

End users should be able to select the most efficient |/O method for
their code, with minimal effort in terms of code updates.
Large-scale simulations should not be slowed down by I/O

It is desirable to have I/O commands in codes independent of

platform and file formats
— Tools are needed to support asynchronous I/O (running concurrently with
computations)
— Default data formats should be flexible, efficient and robust
— Tools are needed for allowing multiple I/0 methods to be plugged-in through
adaptable I/0O libraries

Performance-driven choices should not prevent data from being
stored in the desired file format, since this is crucial for later data |
analysis.

Have efficient ways of identifying and selecting certain data for

analysis, to help end users cope with the flood of data being

produced by these codes.

Make it easy to introduce new research I/0 methods, without

changing your code.

Make it easy to allow /0 to do more than just I/O = code coupling,

 in situ visualization.

ADI&s

Our approach.

* Componentize the I/O layer.
— Similar to the approach PETSC took.

 Letl/O do “more than I/O”.

— Synchronous output.

— Asynchronous output.

— Different file formats for output.

— Code coupling. 1
— In situ analysis.

— |In situ visualization.

* Design a new, metadata rich, file format for massively
parallel file systems/computers.

ADIWs

ADIs

e Overview

— Allows plug-ins for different I/O
implementations

— Abstracts APl from the method used for |/O

y- Simple API, almost as easy as F90 1/0O

* Synchronous and asynchronous
transports supported with no code
changes

— Non XML version released in near future.

. ADIOS buffers data.

» ADIOS allows multiple transport
methods per group

* Change I/O method by changing XML5

Scientific codes | Extenal
metadata
(XML file)
ADIOS API
Buffering Schedule H Feedback
Staging
SIEIZ|S|zlalldls]z](g
w ——] - ~ ol m % -+ %
= | |[= ! Ol|lo D= c A
> (@) 8 ol o ==l e
- m| < = | -
L| @ ez 5 (=
L [t SNE (2|53
S| [2]"
= |3
Parallel and Distributed File System

ADI&s

ADIOS 1.0: Open source

http://www.nccs.gov/user-support/center-projects/adios/

ADIOS Ignites Combustion Simulations
http://www.hpcwire.com/features/ADIOS-Ignites-Combustion-

Simulations-67321602.html

Fusion Gets Faster
http://www.hpcwire.com/
features/Fusion-Gets-Faster

-51820167.html?viewAll=y

Researchers Conduct
Breakthrough Fusion
Simulation
http://www.hpcwire.com/

offthewire/Researchers Cond

((NCCS.GOV stemsp support Contactus [N oo

NATIONAL CENTER FOR COMPUTATIONAL SCIENCES

Home About Leadership Science Computing Resources User Support Media Center

Home » User Support » Center Projects » Adios

Adios

The Adaptable 10 System provides a simple, flexible way for scientists to desribe the data in their code that
may need to be written, read, or processed outside of the running simulation. By providing an external to

the code XML file describing the various elements, their types, and how you wish to process them this run,
the routines in the host code (either Fortran or C) can transparently change how they process the data.

About
Leadership Science

Computing Resources

Access & Accounts X . X . .

The in code 10 routines were modeled after standard Fortran POSIX 10 routines for simplicity and clarity.
General Support The additional complexity including organization into hierarchies, data type specifications, process
grouping, and how to process the data is stored in an XML file that is read once on code startup. Based on

T the settings in this XML file, the data will be processed differently. For example, you could select MPI

Center Projects individual 10, MPI colletive 10, POSIX 10, an asynchronous IO technique, visualization engine, or even NULL
for no output and cause the code to process the data differently without having to either change the
I0TA source code or even recompile.
Lustre User Toolkit The real goal of this system is to give a level of adaptability such that the scientist can change how the 10

in their code works simply by changing a single entry in the XML file and restarting the code. The ability to
control at a per element basis and not just a data grouping such as a restart, diagnostic output, or
analysis output makes this approach very flexible. Along with this detail level, a user can also just change
which transport method is used for a data type such as a restart, analysis, or diagnostic write.

Adios

Press & Publications

For the transport method implementer, the system provides a series of standard function calls to
Visualization encode/decode data in the standardized .bp file format as well as “interactive” processing of the data by
providing direct downcalls into the implementation for each data item written and also callbacks when
processing a data stream once a data item has been identified along with its dimensions and a second
callback once the data has been read giving the implementation the option to allocate memory and process
the data as close to the data source as is reasonable.

Media Center

Getting Started
Download & Installation N

More Information

Press & Publications

uct Breakthrough Fusion Simulation.html

Supports Mac (for reading; soon writing), Linux workstations,

cluster, Cray XT, IBM BGP.

ADI&s

A few ADIOS Methods

Posix
— Writes 1 file per process in a ADIOS-BP file format.

MPI
— Writes 1 file in ADIOS-BP file format.

MPI_STRIPE2

— Lustre optimized, to set stripe size, count, transmission size with
ADIOS-BP file format.

PHDF5

— Writes data in HDF5 file format.

ADI&s

BP File Format

Process Process Process Process Vars Attributes | Index Offsets
Group 1 | Group 2 Groupn | Group Index | Index Index and Version #

As in workflows, fault tolerance is critical for success of a
parallel file format.

Fully 64-bit, tested with files over 20TB, variables over 2
TB.

Failure of single writer (even root) not fatal

Necessary to have a hierarchical view of the data (like [
HDF5).

Tested at scale (220K processors for XGC-1) with over 30TB
in a single file.

S3D code has generated over 100 TB
in a few ‘runs’.

ADIOS Write Performance

Introduce ADIOS.

GTC: over 35 GB/s on Cray XT4
XGC1: over 30 GB/s on XT4

S3D: over 20 GB/s on XT4.

10000 ¢

Chimera I/O Performance (weak scaling)

i —4—MPI —®—MNPI CI0 ——FOSIX “*ORIG HSI

1000 | e

Total IO Time per Restart Dump

g

Chimera 1000x better than apps

first attempt.

* But the apps people fixed this,
no magic here... Also, Lustre

fixed their problem

1@e | BP —®—

T

40

20 -

x\\
(7]
N
P
5
©

-
- o
| —— ‘§
| T—

0.1 I
01 number of cores T
512 1024 2048 4096 8192

« Plot minimum value from 5 runs with 9 restarts/run
« Error bars show maximum time for the method.
« Parallel HDF5 was hand coded by Chimera team

HDF5 vs BP I/0 Throughput

Chombo with ADIOS-BP is l

speed up on Franklin

(These test usually get 90% of

bandwidth on Franklin} /
S

T-;—i'
L L L L L L
x b3 o x o o
i 1 o] o o
o o] < 1 1
~ o v &N © ©
0] N -] v ol
-9 o] =1 - -]
1 i =1 o N N
o '] o i -9 o
] [T] T T
c c '] 3] 0]
]] [c 3] -
v o c] c 2]
< g] <] c
v T hs T T 1
T -] © T
© ® ©
©

Rul

<L
PR
> ‘N
)

4 0

Readers

35
30
emgums izl data
el medium_dats
25 sse|3rge_data
s nnetedf_large
20 .

Q] @
AN O
| ©
| 15

32GB/s reading Pixie3D
10
data.
5
o | it ¢ ’
0 500 1000 1500 2000 2500 3000 3500 4000
eeeeee

<4 ADIOS-BP Read performance on XT4

GTC Particle Data (62 GB) written in ADIOS-bp from 32K cores,

35 GB/s on XT4 for
reading
GTC particle data

Readers

e We can read any subset (space/time) of data from any variable.

* APIs are easy to use.

nlllﬂ

ADI@S

bpls (can extract any portion of data).

S time /ccs/proj/e2e/pnorbert/ADIOS/ADIOS/trunk/utils/bpls/bpls -l record.bp -v
of groups: 1
of variables: 32
of attributes: 0

time steps:

file size: 162 GB

bp version: 1
Group record:

double
integer
integer
integer
integer

integer
double

double
double
double
double
double
double
byte
byte
byte
byte
byte
byte

10 starting from 1

/time {10}=0.003 / 0.03
/itime {10}=3/30
/nvar scalar=8

/dimensions/nxd+2 scalar = 1026
/dimensions/nyd+2 scalar =514
/dimensions/nzd+2 scalar =514

Jvar/vi {10, 514, 514, 1026} =1/1
double /var/v2 {10, 514, 514, 1026} = -2.07946e-06 / 3.43263e-08
Jvar/v3 {10, 514, 514, 1026} = -1.17581e-10 / 1.24015e-10
Jvar/va {10, 514, 514, 1026} = -3.65092e-13 / 3.65092e-13
var/vs {10, 514, 514, 1026} = -7.95953e-11 / 7.95953e-11
Jvar/vé {10, 514, 514, 1026} = -0.184178 / 0.0123478
var/v7 {10, 514, 514, 1026} = -0.000488281 / 0.984914
Jvar/v8 {10, 514, 514, 1026} =0/ 0
/name/vl_name {20}=32/111
/name/v2_name {20}=32/94
e e ADIOS characteristics are
/name/v5_name {20}=32/94 constantly being added.
;::zzxs—:zzz ggi::%gi Criteria is that they (sum of all

byte
byte
integer

/name/v8 name

{20}=32/101

/bconds {48}=-4/7

~real 0m2.091s

characteristics) take <0.1% of the
1/O time.

ADI&s

l

ADIOS BP Visit & Matlab Readers

* rz=adiosread(meshfile,'/coordinates/values');
 var=adiosread(pfile,'pot3d’,'/node_data[1]/values’);
* Visit BP reader is parallel. = Pugmire/Ahern.

ADI&s

" ADIs 1.2

l July 11, 2010 1

82 QAK
= D) N
~CRIDGE B ADIs

New characteristics into ADIOS-BP

* Histograms can be automatically generated, in the
footer (no added cost in writing).

— <analysis group="temperature" var="temperature" break-
points="0, 100, 200, 300" />

— <analysis group="temperature" var="temperature"
min="0" max="300" count="3"/>

— Both the above inputs create bins [0, 100), [100, 200),
[200, 300)

* Min/max over time steps.

* Averages.
* Easy to add new characteristics.

ADI&s

ADIOS (NO XML)

* ADIOS 1.2 contains APIs for users who don’t wish to
use the XML
— adios_init_local
— adios_allocate_buffer
— To declare a ADIOS group
— adios_declare_group
— To select a I/O method for a ADIOS group
— adios_select._method S —
— To define a ADIOS variable |- ‘
— adios_define_var

New ADIOS 1.2 methods

NC4
— Built on top on hdf5 with parallel hdf5 extensions.
— Maintains NC3 compatibility.
— Don’t take advantage of groups, etc.
NSSI
— Data staging using the Sandia method.

DataTap
— Data staging from Georgia Tech.

Data Spaces
— Uses the DART transport for code coupling. 1

AMR

— Optimized for AMR codes, and codes with small writes.
Adaptive
BGP

— Optimized for BGP synchronous writes.

ADI&s

ADIOS AMR Method

Targeted specifically at AMR codes, and codes with lots of small
writes.

In AMR code, each processor can output varied amount of
(possibly small) data.

— Dynamic aggregation technique used to achieve good 1/O performance.
Initial results on Cray XT5, 57600 processors with 8MB/proc on
average, striped on 600 OST’s.

Recent tests for the S3D code

— 120,000 cores, 5 arrays (several scalars), 283
variables (doubles)/write. (800 KB/MPI proc)

— Results are 5.5s +- 1s, ~16GB/s = 0.3% overhead

— Run with 6073 elements = 17s +- 2s, ¥53 GB/s =
1% overhead.

— ALL TIMES include open, write, close, flush.

ADI&s

Adaptive Method

* New adaptive method
meant to handle the
variability of the writes.

ADI&s

MByte/Second

But what about IBM BGP (Intrepid)

- No Changes in ADIOS...

- Write data from a 3D domain decomposition.
- Small =128 KB, Medium = 1MB, Large = 8 MB (per mpi process)

T +— Orig_ADIOS
—>¢— |OR-Aligned
—¥— I0R-Unaligned
—B— I0R-HDF5 1

_...-——-4‘/

300 3000
% —4— Orig_ADIOS —+— Orig_ADIOS
et —3¢— IORMPI
—%— IORHDF5 250 —*— IOR-HDF5 2500
40
200 2000
L
30 p\/
1500
150
.}./
20]
— 100 e § 1000
= === — /
g ~—
I— ,_,7~———‘:%(—~——— 1 —
10fv 50 3 500 T
i 0 02048 4096
02048 4096 8192 1638 2048 4096 8192 16384 Number of Processes
Number of Processes Number of Processes
. C) Large Message
(a) Small Message (b) Medium Message (c) Larg ag

Zli—

D o
U

JAK

DGE

8192

PVFES

ADI&s

16384

Staging methods

* DataTap (Georgia Tech) 2 A S
e NSSI (Sandia) 9 ¢ oo v e eve

I \

Staglng

> 1/0 Nodes

Traditional approach l— —1 l— -_,‘

compute 10 compute 10 o o o
Scheduling of I/O is essential
In-Compute-Node (ICN) approach 35 =64
_30 — GTC: with 16 staging nodes .
compute ICN 10 compute ICN 10 % 25 ¥ 1024
©
2 W 2048
§ 20
Asynchronous 1/0 pipeline approach with DataTap and SmartTap (@)
0 10 pipeline I 10 pipeline & 15
i -
: 2 10
8 7]
g compute compute compute a
Ti > 0
ime
\ I\Il G Con_1 Con_4 PA_Con_1 PA_Con_4 POSIX

1al Laboratory - - ‘—-'J

NSSI staging method (Sandia: Oldfield, Kordenbrock

e Staging method + server built for caching + aggregation
on sever side.

’ * NESSI transport

— RPC layer on portals and infiniband.
— Mostly tested with NC4 method to do the . ¢
— Will support any adios method to write. NEtworkScalable Service Interfack

Client Application
(compute nodes) I/O Service

(compute/service nodes) | ystre File

Processed System

Raw ool
Data Data Q.;’ﬁ
Visualization
Cache/ Client
$2 QAK aggregate/
URIDGE process
A@EAY L
ADI&s

/O for more than just I/O

 Use the staging
nodes and create

a workflow in the o_ie array

staging nodes.

 Allows usto
explore many
research aspects.

* |Improve total
simulation time
by 2.7% over
synchronous
writes to disk.

82 QAK
VURIDGE

National Laboratory

BP file

sorted array
“ N

Sort
Bitmap j
Indexing
O Index file
E J Histogram H Plotter I—> k‘ M
2D Histogram Plotter ‘
Output Data " Dingnostios.
3 Particle diagnostics Toroidal flux diagnostics
|))
Momentum diagnostics Eoloely divergence dna_\odca
Energy diagnostics Growth rate diagnostics
7 ,;,:,:,. Current diagnostics |Uulmum velocity dhmodics' Visualization by Vish
:E V BPfile | i
4 BP writer .

O

» {wawmm){

ADI&s

XGC-0 — M3D-MPP Coupling Using DataSpaces

« The simulations exchange multi-dimensional data arrays (e.g., 2D)
o Domain discretization is different for the two applications
o Data redistribution is transparent and implicit through the space

o The simulations have different interaction patterns
« €.g., one-to-many, many-to-many, many-to-one

T

|
I
|
I
|
I
I
I
I
I
I

2D Array of Doubles Distributed DataSpaces 2D Array of Doubles Distributed
on 6 Processors

on 32 Processors
26

ADI&s

How does it work?

Code which sends : data

call adios _open (adios handle,
"writer2D", fn, "w", group comm,
adios err)

#include "gwrite writer2D.fh"

call adios close (adios handle,
adios err)

* Generate the XML file to map F90/C variables to
names.

<adios-group name="writer2D" >
<global-bounds
dimensions="dim x global,dim y global™
offsets="offs x,o0ffs y">

<var name="xy" type=“real®
dimensions="dim x local,dim y local"/>

</global-bounds>

</adios-group>

<transport group="writer2D" method = "“DART” '>

Code which receives data

call adios_set _read method (. DART

call adios _read init (group comm, ierr)

,lerr)

call adios fopen (fh, fn, group comm, gcnt,
adios err)
call adios_gopen (fh, gh, "writer2D", vcnt,

acnt, adios err)

call adios_read var (gh, "dim x global",
offset, readsize, dim x local,
read bytes)

call adios read var (gh, "dim y global",
offset, readsize, dim y local,
read bytes)

call adios_read var (gh,
readsize, xy,

" Xy" ,
read bytes)

offset,

call adios _gclose (gh, adios err)
call adios_fclose (fh, adios err)

Now we have memory to memory coupling

Everything can happen with APIs too

ADI&s

o)
~¢RIDGE) ADIYs

Loading ADIOS on jaguar/ewok/lens

e Step 1, load adios
— module load adios/1.1.0

e Can build adios from the source

Y — http://www.nccs.gov/user-support/center-projects/adios/
download/

— Must have MPI installed, and MinixML installed.
— http://www.minixml.org/software.php |

UDGE AD gs

Write Example

In this example you will start with a 2D code which writes data
with a 2D array, with a 2D domain decomposition, as shown in
the figure.

— xy = 1.0*rank + 1.0*ts

We will write out 2 time-steps, in separate files. ‘
For simplicity, we will work on only 12 -

cores, arranged in a 4 x 3 arrangement. P8 P9 .

Each processor will allocate a 65x129

array (xy).
Y P4 P5 P6 P7
The total size of the array = 4*65, 3*129 .

P2 P3

0.00 275 5.50 8.25 1.0

ADI&s

Looking at 1/O portion of coupling_writer 2D base.F90

posx = mod(rank, npx) ! 1st dim easy: 0, npx, 2npx... are in the same X position

posy = rank/npx | 2nd dim: npx processes belong into one dim

offs_x = posx * ndx ! The processor offset in the x dimension for the global dimensions
offs_y = posy * ndy ! The processor offset in the x dimension for the global dimensions
nx_local = ndx ! The size of data that the processor will write in the x dimension

ny local = ndy ! The size of data that the processor will write in the y dimension
nx_global=npx * ndx ! The size of data in the x dimension for the global dimensions
ny_global=npy * ndy ! The size of data in the y dimension for the global dimensions

do ts=0,timesteps-1
write(filename,'(a4,i2.2,a4,i2.2)') 'cpes',ts,'.bn.",rank | The name of each output file 1/proc
xy = 1.0*rank + 1.0*ts | The value to place in the xy array

open(100,file=filename,status='"UNKNOWN',form='unformatted’,action='write')
write(100) nx_global,ny_global
write(100) nx_local,ny _local
write(100) xy
close(100)
4~ (enddo

)

D ~
LURIDGE
National Laboratory A D I S

Compiling and running the code

 Run the code, see 24 files produced from 12 processors
Make

> make

> mpirun -npl2 ./coupling writer 2D base
1 ts= 0

ts= 1
> 1ls *.bn*

cpes00.bn.00 cpes00.bn.05 cpes00.bn.10 cpesO0l.bn.03
cpes01.bn.08

l cpes00.bn.01 cpes00.bn.06 cpes00.bn.11 cpesO0l.bn.04
cpes01.bn.09

cpes00.bn.02 cpes00.bn.07 cpes0l.bn.00 cpesO01.bn.05
cpes01.bn.10

cpres00.bn.03 cpesO00.bn.08 cpesO0l.bn.01 cpesO0l.bn.06
cpesO0l.bn.11

cpes00.bn.04 cpes00.bn.09 cpesOl.bn.02 cpesO1l.bn.07

ADI&s

ADIOS the code -1

1. cp coupling_writer_2D base.F90 coupling_writer_2D.F90, edit
coupling_writer_2D.F90

2. Uncomment lines 22-24. 1 character (len=200) :: group
— We need to declare variables to use for ADIOS.
— Since ADIOS is 64-bit, the variables are integer*8

3. Line 32: We need to initialize ADIOS: like MPI_Init, after call MPI_Comm_size

— call adios_init (‘coupling2D_writer.xml’, ierr)

4. Lines 41,68: Need to finalize ADIOS: before MPI_Finalize

- call adios_finalize (rank, adios_err)

5. Line 57: replace the output file name.
— write(filename,'(a4,i2.2,a3)') 'cpes’,ts,'.bp'

6. Line 60: replace F90 open with ADIOS open

- call adios_open (adios_handle, ‘writer2D’, trim(filename), ‘w’, group_comm, adios_err)

/. Line 64: replace the close with the adios_close
- call adios_close (adios_handle, adios_err)

8. . Line 61-63: replace the writes with the ADIOS include, # starts at first

column in file.
& — #include “gwrite_writer2D.fh”

S 1\\%1{
<CRIDGE
et ADI&s

National

The ADIOS XML configuration file.

Describe each 10 grouping.

Maps a variable in the code, to a variable in a file.
Map an IO grouping to transport method(s).

Define buffering allowance ‘

“XML-free” APl completed and included in ADIOS
1.2

ADI&s

XML Overview

* Look at the original I/O

— write(100) nx_global,ny global
— write(100) nx_local,ny_local

— write(100) xy
r° Look at coupling2D_writer.xml
e <adios-group name=“writer2D”>
e <var name="nx_global” type=“integer”/>
e <var name=“ny_global” type="integer” />

e <var name=“nx_local” path="/aux” type="integer” />

¢ <var name=“ny_local” path="/aux” type=“integer”/>

e <var name=“xy” type=“real*8” dimensions=“nx_local,ny local”/>
e </adios-group>

§ 3\
UAK

RIDGE
ADIts

XML overview (global array)

We want to read in xy from an arbitrary number of processors, so
we need to write this as a global array.
Need 2 more variables, to define the offset in the global domain
— <var name="“offs_x" path="“/aux” type="integer” />
— <var name="“offs_y” path="/aux” type="integer”/>
Need to define the xy variable as a global array
— Place this around the lines defining xy in the XML file.

— <global-bounds dimensions="nx_global,ny_global"
offsets="offs_x,offs_y">

— </global-bounds>

ADI&s

XML overview

Need to define the method, we will use MPI.
— <transport group="writer2D" method="MPI"/>

Need to define the buffer

— <buffer size-MB="4" allocate-time="now"/>

— Can use any size, but if the buffer > amount to write, the 1/0 to disk will be
faster.

Need to define the host language (C or Fortran
ordering of arrays).

— <adios-config host-language="Fortran">

Set the XML version

— <?xml version="1.0"7?>

And end the configuration file

— </adios-config>

ADI&s

e w

Y

20.

14.
15.

16.

The final XML file

<?xml version="1.0"?>
<adios-config host-language="Fortran">

<adios-group name="“writer2D”>
<var name=“nx_global” type="integer”/>
<var name=“ny_global” type=“integer”/>

<var name="offs_x" path="“/aux” type=“integer” />
<var name="offs_y” path="/aux” type=“integer”/>
<var name=“nx_local” path="“/aux” type=“integer”/>
<var name=“ny_local” path="“/aux” type=“integer”/>

<global-bounds dimensions="nx_global,ny global" offsets="offs_x,offs_y">

<var name="“xy” type=“real*8” dimensions=“nx_local,ny local”/>
</global-bounds>

</adios-group>

<transportgroup="writer2D" method="MPI"/>
<buffer size-MB="4" allocate-time="now"/>

</adios-config>

ADI&s

gPP.Py

* Converts the XML file into F90 (or C) code.

' >gpp.py coupling2D_writer.xml

* > cat gwrite_writer2D.fh

adios_groupsize =4 &

+4 &

+4 &

+4 &

+4 &

+4 &

+ 8 * (nx_local) * (ny_local)

call adios_group_size (adios_handle, adios_groupsize, adios_totalsize, adios_err)
call adios_write (adios_handle, "nx_global", nx_global, adios_err)
call adios_write (adios_handle, "ny_global", ny _global, adios_err)
call adios_write (adios_handle, "offs_x", offs_x, adios_err)

call adios_write (adios_handle, "offs_y", offs_y, adios_err)

call adios_write (adios_handle, "nx_local", nx_local, adios_err)
call adios_write (adios_handle, "ny_local", ny_local, adios_err)
call adios_write (adios_handle, "xy", xy, adios_err)

ADI&s

Compile and run the code

> make

> mpirun -np 12 ./coupling_writer_2D
ts=0

ts=1

> |s *.bp

cpes00.bp cpesO1.bp

Now we change the transport method to POSIX
Now we change the transport method to phdf5

ADI&s

ADIOS Tools

* bpls
— Similar to h5dump/ncdump
— Also shows array min/max values
Y — Performance independent of data size

* bp2h5, bp2ncd

— Convert BP format into HDF5 or NetCDF

o ADIWs

ADIOS Reading

* GOALS

— Learn how to look at a ADIOS-BP file.
— Learn how to convert a code to read in ADIOS files.

— Learn how to read in data from an arbitrary number of
processors.

ADI&s

bpls

E bpls -lv cpes00.bp

File info:

of groups: 1

of variables: 7

of attributes: 0

time steps: 1 starting from 1
file size: 795 KB

bp version: 1

endianness: Little Endian

Group writer2D:

integer /nx_global scalar = 260
integer /ny_global scalar = 387
integer /aux/offs_x scalar=0
integer /aux/offs_y scalar =0
integer /aux/nx_local scalar = 65
integer /aux/ny_local scalar = 129
double /xy {387,260} =0/ 11

ADI&s

bpls

e Use bplstoreadina 2D slice

> bpls cpes00.bp -d xy —n 2 -s “128,64" -c “2,2”
double /xy {387, 260}

slice (128:129, 64:65)

(128,64) 01

(129,64) 45

o 4
> A/t
N ~
LRIDGE
National Laboratory —— A D I S

bp2h5, bp2ncd

| > module load hdf5

*| > module load netcdf
*| >bp2h5 cpes00.bp

| > hb5ls cpes00.h5

aux Group

nx_global Dataset {SCALAR}
ny_global Dataset {SCALAR}
xy Dataset {387, 260}

| >bp2ncd cpes00.bp

| >ncdump —h cpes00.nc
netcdf cpes00 {
dimensions:
nx_global = 260 ;
ny global =387 ;
aux_nx_local =65 ;
aux_ny_local =129;
aux_offs x=65;
aux_offs_ y=129;
variables:
double xy(nx_global, ny_global) ;

42 OAR

N 5 § =t
URIDGE
National Laboratory A D I S

Looking at 1/O portion of coupling_reader 2D base.F90

* We loop over the 2 timesteps to read, and write out the results 1 ascii file/reader

do ts = 0, ntsteps-1 I Loop for ts=0,1
write(filename,'(a4,i2.2,a4,i2.2)') 'cpes’,ts,'.bn.",rank | Get the filename
open(100,file=filename,status='OLD',form="unformatted’,action='read') !open the file

read(100) nx_global,ny_global Istart reading
read(100) readsize(1), readsize(2) I Size of array xy to read
offset(1) = mod(rank, posx) * readsize(1) Icalculate offsets for
offset(2) = rank/posx * readsize(2) lwriting in ascii file
allocate(xy (readsize(1), readsize(2))) lallocate the memory
read(100) xy Iread in the big array

Ildump out the array in 12 separate files
do j=1,readsize(2)
do i=1,readsize(1)
write (200+rank, '(3i5,f8.1)'), ts,i-1+offset(1),j-1+offset(2),xy(i,j)
enddo
enddo
close(100) Iclose the file

RIpGE ADIs

Compile and run the code

o[> make
*| > mpirun -np 12 ./coupling_reader 2D _base

el >|s fort.*

— fort.200 fort.202 fort.204 fort.206 fort.208 fort.210
— fort.201 fort.203 fort.205 fort.207 fort.209 fort.211

e| >tail fort.211
— 1250386 12.0
— 125138612.0
— 125238612.0
— 1253386 12.0
— 125438612.0
— 1255386 12.0
— 1256386 12.0
— 125738612.0
— 1258386 12.0
— 1259386 12.0

* File writes timestep, x (global), y(global), xy

\. X ,
\ \ K

\:’ (
y"\
N S
5 Y 11N \‘ -
a@\Y L €y
National Laboratory

8.

6.

How to place ADIOS APIs into the read code

cp coupling_reader_2D base.F90 coupling _reader 2D.F90
Line 13, Make offset and readsize integer*8, since ADIOS=64 bit.
Uncomment Lines 26-27 (ADIOS integer, ADIOS integer*8)

— Need to declare variables that can tell us the number of groups, variables,

attributes in a file. We also need file and group pointers.
Comment Line 29: We don’t need this anymore. (integer :: posx=4)
Line 39: change the filename, since we have 1 file
— write(filename,'(a4,i2.2,a3)') 'cpes',ts,'.bp’
Lines 40-41, replace the open statement with
— call adios_fopen (fh, filename, group_comm, gcnt, ierr)
— call adios_gopen (fh, gh, ‘writer2D’, vcnt, acnt, ierr)
Uncomment Line 43 ! If (ts==0) then
Replace lines 44-47 with adios_read_var calls, from read(100) nx_global

— call adios_read_var(gh, ‘nx_global’, offset, readsize, nx_global, read_bytes)

— call adios_read_var(gh, ‘ny global’, offset, readsize, ny global, read__

— readsize(1) = nx_global / nproc !don’t need to read in readsize(1)
— readsize(2) = ny_global !don’t need to read in readsize(2)

bytes)

ADI&s

ADIOS the code

9. Lines 49-50, (we will read the data with a 1D domain

decomposition). (changing the base offsets)
— offset(1) = rank * readsize(1)
— offset(2)=0

10.Uncomment Lines 52-54 (since last proc might need
to read in more data). (if (rank ==nproc-1) then ...

11.Comment Line 55, since we have this from change 6.

if (ts==0)
12. Line 59, change the read(100) xy to

— call adios_read_var(gh, ‘xy’, offset, readsize, xy, read_bytes)

17.Line 66-67, replace the close(100) statement with

— call adios_gclose (gh, ierr)

L OAK call adios_fclose (fh, ierr)
@ VAR
CRIDGE

National Laboratory l \D I &S

A
1

Compile and run the code

> make
> mpirun -np 1 ./coupling_reader_2D
> |s fort.*;tail —n 4 fort.100

fort.100

1256 386 12.0
1257 386 12.0
1258 386 12.0
1259 386 12.0

> mpirun -np 7 ./coupling_reader_2D
> |s fort *-tail —n 4 fort 100

fort.100 fort.101 fort.102 fort.103 fort.104 fort.105 fort.106
1333869.0
134 3869.0
135 3869.0
1363869.0

We can read in data from 1 — 260 processors now with a 1D domain
decomp.

ADI&s

Conclusions.

ADIOS is an |/O componentization framework that

— Has been proven for extreme scale performance on massively parallel
systems (real codes with >200K cores simulations).

— Allows for both synchronous and asynchronous I/O transports.

— Contains a new, metadata rich, I/O format that can allow for extreme scale I/
O (largest runs at 220K cores for the XGC1 code now) and data analysis in
situ with the computation.

The ADIOS BP file format is a log-file format, which
has shown extreme scalability for both write and read
access.

ADIOS 1.1 is available at
http://www.nccs.gov/user-support/center-projects/
adios/

'ADIOS 1.2 will be coming July 11, 2010

ADI&s

